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ABSTRACT 

In the controlled fusion experiment, Astron, relativistic electrons are 
injected at the end of a long cylindrical tank across an applied axial magnetic 
field. A rotating cylindrical sheath of electrons is formed. The self-consistent 
field problem is solved by integrating the time-dependent Vlasov-Maxwell 
equations numerically using finite-difference methods. The problem described 
is four dimensional and requires a large scale computing system for the solu- 
tion of the difference equations. 

In the controlled fusion experiment, Astron [l], relativistic electrons 
are injected into a cylindrical region containing an applied magnetic 
field. The object is to form the E-Layer, a cylindrical layer of electrons, 
so that the self-field exceeds the applied field. It is intended that the 
resulting configuration will be axially symmetric with no azimuthal 
component of magnetic field. 

The mathematical model for the build-up of the electron layer and 
self-field is the time-dependent Vlasov equation coupled with Max- 
well’s equations. Assuming axial symmetry the field component 3, and 
B, can be derived from a stream function &P, z, t). The canonical angular 
momentum, pe, is a constant of the motion, and we assume that all 

1 Contract No. W-7405-eng-48. 
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electrons are injected with the same value of pa. Hence we can con- 
sider an electron distribution function, f, defined on a four dimensional 
phase space (r, z, p,, pz). We assume that the system is electrically neu- 
tral at every point. The ion distribution is not solved explicitly, but ions 
are assumed to be present providing charge neutralization of the layer. 

The partial differential equations for ~(r, z, t) and f (r, z, pT, pr, t) 
are solved numerically using finite-difference methods. The methods 
used are described in detail. At each time step an integration off over 
velocity space yields the current density jh(r, z, t). The self-field is then 
computed from the solution of the I,! equation, and added to the applied 
field, giving the total field used in the Vlasov equation. We are thus 
solving the self-consistent field problem. The phase space can consist 
of over 160 000 points, e.g., 81 in z, 12 in Y, 19 in pz, and 9 in pr. Such 
a computation has only become feasible since the advent of larger 
computing machines. The problems described in this paper have been 
done on the LARC. 

A program of this type is meant to be used for extensive parameter 
studies. In particular, the form of the applied fields can be varied, as 
well as the method of injection. There is a great variety of quantities 
that can be printed out or plotted at any given time step. Usually we 
concentrate on dependent variables which are functions of the spatial 
coordinates r and z, such as the current density. This together with the 
magnetic field describes the solution to the self-consistent field problem. 
Velocity distributions of the electrons can also be plotted. In this report 
we shall give a sample of displayed output of some results for a con- 
venient form of the vacuum field and a simple mode of injection. 

I. MATHEMATICAL MODEL FOR THE FORMATION OF THE E-LAYER [2] 

Although transient radial and axial currents will exist in this model, 
particularly in the early stages of formation and near the injection point, 
these are assumed to be small compared with the azimuthal current. 
The radial and axial components of the magnetic vector potential are 
therefore neglected. The addition of these components to the present 
model would not be an unreasonable complication, and has been con- 
sidered for future computations. 

We specify the magnetic field by the single component of the vector 
potential, A,(r, z, t). The equation for A, is 
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1 @A0 IPA0 d 1 d -----__ 
~2 at2 az2 ar [ 

7 dr (r4J] = 476 (1) 

and we have 

1 dA 
B,= -2; Bz==+ g(rA,); Eo== - cat! (2) 

We can write the canonical angular momentum as 

PO = mow0 + f rAo, 

where y = (1 - v~/c~)-~/~, m, is the electron rest mass, and vO is the 
azimuthal component of velocity. 

From the above we have the equation 

JC rve + 
e 

c 
- rAo = s = constant. 
moc2 0 

It is convenient to introduce the function 

* = f rve, 

so that 

wz”--LrA,, 
mot moc2 

and since we are assuming that all the electrons have the same ps we 
can use y in place of A0 to determine the field. From Eqs. (l), (2), and 
(4) we have 

i agy azy a 4ne -----r- 1 ay 
~2 at2 a22 dr [ 1 -- = 

r dr - - rje, moc2 (5) 

2 i ay B,=+--. 
r az ’ 

Bg=-mgC2 1 ay 
e r--z-. (6) 

We introduce the dimensionless velocity u defined by 

II=&. 
c 

The expression for y becomes 

(7) 
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and from (3) we have y = rue; hence 

Let f(~, z, u,, u,, t) be the electron distribution function in phase 
space, such that f (r, z, u,, u,, t) drdzdqdu, is the number of electrons 
in the element drdzdu,du, at the point (Y, z, ur, u,) at time t. The di- 
mensions off are the number of electrons per square centimeter. The 
equation governing f is 

where S expresses the source of electrons injected into the phase space. 
We write the above as 

From (7) we have 

dr c 
u, and 

dz c 

dt Y 
-=--u 
dt y ” (9) 

We determine du,/dt and du,/dt from the relativistic equations of mo- 
tion of the electrons. The radial and axial equations are 

m&i: + $ - yrQ2) = f re B,, 

m&i’+ pi) = - CrbB,. 

From (9) we have 

and using (3) and (6) we have 
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du 7 = 
dt 

d”z - 
dt (10) 

The equation for f can now be written as 

The azimuthal current density j, is given by 

From (3) we have 

jR = dt- -!t JJ - du, du,. f 
277 r2 y 02) 

Equation (5) becomes 

i azy ay4 a 1 ay -__ 
c2 at2-p-rp -__ = [ 1 dr r dr 

- re -% JJ f du du,, 
r Y r 

(13) 

where r, = e2/moc2 is the classical electron radius. Equations (8), (ll), 
and (13) are the self-consistent set of equations that describe the for- 
mation of the E-layer. 

II. DIMENSIONLESS EQUATIONS, BOUNDARY CONDITIONS 

It is useful in a numerical computation of this type to introduce an 
appropriate set of dimensionless variables. In place of ‘y, given by 
Eq. (4), we use the variable ,G delined by 

In order to evaluate the above denominator we consider an equi- 
librium orbit in the vacuum field. At the midplane, z = 0, the end mirror 
fields are assumed to be negligible, i.e., the vacuum field at z = 0 is 
given by 

&(r, 0) = Q &, 
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where B, is a constant determined by the injection energy and radius 
and the desired pitch angle. For an equilibrium orbit at z = 0 we have 
from the radial equation of motion 

moyro@ = - f r,t?B,,, 

where r,, is the radius of the equilibrium orbit at z = 0. Hence 

ps = - t B,r,Z + + f  B,r,f z - + f B,,r& 

and we have 
2m,c2 b=---- 
eB,ri ‘* 

We introduce the following dimensionless variables 

43 
” = B,r,, 

et r zz- 
r. 

6, = + 
0 

(14) 

From these definitions and Eqs. (4), (6), and (14), we have 

It is convenient to let 

where p, represents the vacuum field and is created by external coils, 
and ,u is the contribution due to the electron layer. The function ,u, 
satisfies the equation 

ak ak ------R?&!h)=O. 
ata a22 

We denote the components of the vacuum magnetic field by b,, and b,, 
and the azimuthal component of the corresponding magnetic potential 
by aeC. For the electron distribution functions we use the dimensionless 
quantity, Q, defined by 
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(15) e = rcro.f 

We introduce the parameter C, given by 

- (2.93 x 10-4)B,,r,. 

We define the function P(R, 2, t) given by 

(16) 

This is the potential function for the electron motion, and the equa- 
tions of motion in these variables become 

du dP --I_=--- duz - ap 
dt dR ’ dt --x2-* 

We can now give the complete set of equations in dimensionless 
form. Equation (13) becomes 

- % j$ +du,du,. (17) 

Equation (11) becomes 

where 

(19) 

w-0 

(21) 

(231 

(24) y = (1 + 24: + U”, + 2P)“2. 
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We wish to solve the initial value problem given by (17) and (18) 
together with Eqs. (19)-(24). At time t = 0, we have 

,a = ,uu, = I + 2Ra,,. 

Hence, the initial condition for Eq. (17) is 

,u(R, 2, 0) = 0. 

We solve the equation on the domain 

where I* = I/r, and R,,, is chosen sufficiently large so that the effect 
of the electron layer can be neglected. The boundary conditions are 
those of conducting walls, given by 

/4R mm 2 z, T) = 0, p(R, - I*, t) = 0, ,u(R, I*, T) = 0. 

In many problems we assume that the solution is symmetric about Z = 0 
and solve in the domain 0 _( Z 6 I*. The boundary condition at Z = 0 
is then 

+ 0 --Z 
dZ 

The initial condition for Eq. (18) is 

We solve the equation on the domain 

R, i R 5 4, - I* 5 z _( I* 

-bdnax L u, 5 G&m~ -wmax 5 u, 2 G&ax 

where R, and R, are the radii of the inner and outer material walls, 
respectively, of the cylindrical region where the electron layer is formed. 
The velocity space, i.e., (u,),,, and (u,)~&=, is taken large enough to 
accommodate all but the high velocity tail of the electron distribution 
function. This is small because electrons of too high a velocity would 
leave the system. The boundary condition on Q is that Q = 0 on all the 
boundaries of the four-dimensional domain. In the case of the domain 
0 _( Z i I* we assume that the electron distribution function is sym- 
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metric about the plane 2 = 0, i.e., as many electrons are going in one 
direction as the reverse. For this to apply at all times implies equal 
injection at both ends. 

III. FINITE-DIFFERENCE METHODS 

In this section we give the finite-difference approximations used in 
the LARC code LAYER. We subdivide the phase space into the finite- 
difference mesh given by 2, = ih, Ri = jh, (u,), = kh*, (u,), = Zh*, 
where i, j, k, and 1 are integers. We have - Z 5 i 5 Z, 0 5 j 5 J, 
- K _( k _( K, - L _( 1 L L, where Zh = I*, Jh = Rnlax, Kh* = (u,),,~, 

Lh* = (Qmax. Let t, = n.ls, with IZ = 0, 1, 2, 3, . . . and introduce, 
the notation ,@i = ,u(Ri, Zi, T,), and ~‘$i,~,~ = Q(R~, Zi, url, uZk, tn). 

We solve Eq. (17) by an alternating direction implicit method. For 
stability reasons we found it convenient to use half-time steps for this 
equation. The difference approximation is then written as two equations. 
In the first half-time step the equation is implicit in the R direction and 
explicit in the Z direction; in the second half-time step it is implicit in 
the 2 direction and explicit in the R direction. The difference equations 
are 

and 

We have P?,i = (,%)i,i f ,@,i, where ,u, represents the applied field, and 

(,?f,c)” 2 i @‘E.i,k,l 
k=-K Z--L Y8,i,k,l 

(27) 
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l4,i.k.l = P + (kh*)2 + (zh*)” + C,z( .jh)-yLqj)2]~:2. (28) 

The expression for &J1J2 uses the same sum over k and I but replaces 
ji?ji by ,@;‘l”. 

We can write the above difference approximation as two sets of linear 
algebraic equations : 

21’ aj-?it bj=&. 

The method for solving the systems is a standard one [3, 41. For the 
first half-time step we use the algorithm 

for all i and j = 0, 1, 2, 3, . . . . J - 1, 
where 

ES/? = ai 
1.1 a. 3 + b. - 3 + A b.E? 3 a,? 1 

@, j = P%l, j - (2 - 2L4)fA?,j + /l?$-l, j + h2i2,f - il/A2Yj112 

for all i and j = 1, 2, 3, . . . . J - 1. We use the boundary condition 
at R = 0 to give 

Eiff = 0 and f y,. = 0 

for all i. The computation consists of a double sweep along each i line; 
on the first sweep the E’s and f's are calculated, and on the second sweep 
the ,U’S are calculated using Eq. (31) and the boundary value 

/4y = 0 for all i. 
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For the second half-time step we use the algorithm 

39 

(32) 

for all j and - II i 5 I- 1 (or 0 5 i 5 Z - l), where 

for all j and - I + 1 5 i 5 Z - 1 (or 1 5 i 5 I- 1). We use the 
boundary condition at Z = - I* to give 

E& = 0 and f!!f,/2 = 0 

for all j. For a single ended problem the condition at 2 = 0 yields 
E,1 j = 1, f ;j1/2 = 0 for all j. The computational procedure is again 
a double sweep using Eq. (32) and the boundary value 

pyy = 0 for all j. 

This implicit scheme may seem elaborate compared with an explicit 
scheme; however, the simpler method was tried originally and did not 
give as good results. Furthermore, the time required for solution of 
the p-equation is very small compared with the time required for the 
solution of the four dimensional e-equation as we shall see. By using 
the implicit difference method for Eq. (17) we have been able to double 
.It, which for a calculation of this type saves many hours of machine 
time. 

At the end of a full-time step the magnetic field is calculated at each 
point in the (I, z) domain. From Eqs. (22) and (23) we have 

@,Yt,j = @A,j - (W2)-1Gu’t+,,j - /&~,il (33) 

(b)‘t,j = @zc),,j + (4jh2)-%qi+l - /-4,j-11. (34) 

The vacuum field expressions b,, and b,, are given and will be discussed 
later. The above field components, 6, and gz, are printed and plotted 
output respectively; in addition they are used to compute P, and P,, 
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which are needed in the solution of Eq. (18). From Eqs. (20) and (21) 
we have 

(35) 

(36) 

We shall now consider the solution of Eq. (18) by finite difference 
methods. To illustrate the problem consider the one-dimendional equa- 
tion 

z-+ dx u-dQLO ’ u = constant. (37) 

The simplest two-level approximation would be 

Q;+l = e9 - 4 4e?+1 - ey-l>, 

where (Y = uilt/dx. This scheme is unstable no matter how small .IT 

is. The simplest alternative is 

Qq+l = @y - a(@j - &Ppl), U>O 

= e3 - “(@5+1 - e$ u < 0. 

This scheme is stable so long as / cz j 9 1. The generalization of this 
to Eq. (18) is straightforward and leads to the stability conditions 

kh*At 
5 1, 

lh*At 
-5 1, 

P AT P,;lt 

yh yh 
L-1, - 

yh* yh* 
Il. (38) 

The first version of the LAYER code employed this scheme and an explic- 
it approximation to Eq. (17). Unfortunately the above scheme intro- 
duces an artificial diffusion which spoils the results after a short time. 

We can consider a space an time centered three-level approximation 
to Eq. (37): 

pa+1 z ey-’ - “(@+1 - ey-1) 

which is stable if / 011 5 1. The extension to more than one dimension 
is again immediate, leading to the stability condition Eq. (38). The 
second version of LAYER used this scheme. Considerable computa- 
tion has been done with this method leading to fairly satisfactory results, 
but with the crude mesh employed in this problem it is still not accurate 
enough for extremely long running times. Furthermore, it has the dis- 
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advantage of being a three-level formula, and when the time step must 
be decreased for stability reasons it is quite awkward. 

The third version of LAYER uses a three-point approximation to 
the advective term. For Eq. (37) this becomes 

This scheme is stable if / cy 1 ( 1. It is accurate to second order in the 
quantities u3t and 3x, and has the convenience of being a two-level 
formula. The extension to more than one dimension is not straight- 
forward and can lead to an unstable method if not done correctly [5]. 
We can write the above approximation in matrix form as Q”” 
= (I + A)@. If we consider a two-dimensional equation and take the 
approximation given by the equation en+’ = (I + A + B)Q’“, where B 
is the advective difference operator in the other direction, the scheme is 
unstable. However, if we use the operator equation ~“+l = (I + A) 
(I + B)Q” the scheme is stable. This is the scheme that is used in the 
third version of LAYER. The difference equation can be represented by 

e /l+l = (I + A) (I + B) (Z + C) (I + D)@“. 

The computational process involved in a single time step is divided into 
four cycles. In the first cycle advection in the Z direction is calculated, 
then in the R direction using the results of the first cycle, then in the U, 
direction using the results of the second cycle, and, finally, in the u, 
direction using the results of the third cycle. The actual difference equa- 
tions for Eq. (18) are given below; the fractional time notation is used 
as a convenient labeling of the cycles and does not represent fractional 
time steps. 
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The stability conditions for this finite-difference method are given by 
Eq. (38). 

Since the finite-difference mesh of the four-dimensional phase space 
consists of such a large number of points, only a small part of it can 
be in the core storage at any one time; the rest of it is on magnetic drums. 
The Q’S of four i strips and the y’s of one i strip are in core storage, 
i.e., for a fixed value of i: y” 2,3gks~7 &,k,l? &l,j,k,l, Q?+o,k,b for all j, 
k, 1 are used to compute @;:$I all j, k, 1. The L$,Y,$, are then computed 
and stored on top of the ~l-r,~,~, r, which are no longer needed ; then 
the @$Q are computed and stored on top of the .@J~,$ and finally 
the @$f$r are computed and stored on top of the @$,y,;. Before passing 
on to the next value of i the contributions to the various integrals such 
as 1 and the conservation checks are added in. When the Q cycles are 
completed for all values of i the ,U equation can be solved, completing 
the self-consistent solution for that time step. 

We must consider the boundary conditions for the Q equation and 
the conservation of particles. Particles can be lost at the physical bound- 
aries Z = I*, Z = - I*, R = R,, and R = R,. Numerically they can 
also be lost at the boundaries of the velocity domain. 

For i = I(2 = + I*) we take Q?;:,~,~, I = 0, all j, k, 1, and compute 
Q?,$,\, I from the above equations. For k > 0, &$,\, I is added to the sum 

111-1 Ii tL J 

Mn+l = Athh*2 2 2 c 2 @&,,&I, 
,n=l k-l 1=-L j=l 

(40) 

and then set to zero before the next time step. The sum A4 is the total 
number of particles lost at Z = + I*. A similar treatment is made 
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at i = - Z (Z = - I*) for k < 0. For a single-ended problem with 
0 ( Z _( I* we use @T&r = @$,5k,r in the computation of @&. 

At the boundary R = Rz let R, = J,h; then we take @$i+I,k,r = 0, 
all i, k, 1 and e2;t:,,k,I can be computed from the e equations. For 
I > 0, e2;t:,,k,l is added to the sum 

ILfl fK +L 1 

Q n+l = .Ithh*2 x x 2 2 e3,,k,l (41) 
m-1 k=-h’ ,=(J is-l 

and then set to zero before the next time step. The sum Q is the total 
number of particles lost at R = R,. A similar treatment is made at 
R = R,. In addition to the sums M and Q of particles lost at the ma- 
terial boundaries, a sum of particles injected and a sum of particles in 
the mesh are computed. Conservation of particles is then checked. 
Particle energy and field energy are also computed, and conservation 
of energy is checked. The details of these calculations are given in the 
Appendix. 

IV. NUMERICAL RESULTS 

There are two optional forms of the applied magnetic field available 
in the LAYER code. One form is given by 

see = AIR + A,Z,(hR) cos AZ (42a) 

b,, = IA,I,(IR) sin AZ (42b ) 

b,, = 2A, t AA& cos AZ, (42~) 

where I, and I, are modified Bessel functions of the first kind and i, 
A,, A, are given constants. 

Another form is 

a HC = G + 2 Jl(lR) exp( - I>/*) cash ilZ (43a) 

b,, = - aJ,(hR) exp(- al*) sinh hZ (43b) 

b,, = 1 + (wJ,(AR) exp(- hl*) cash hZ, C43c) 

where Jo and J1 are Bessel functions of the first kind, and h and 01 are 
given constants. An advantage of the above expression is that, if A sat- 
isfies the equation 

AJo@) = J,(A), 
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then P, = 0 at R = 1 for all 2. Hence, if we inject at R = I with u,. = 0 
the particles will not spread radiaIly in the early formation of the elec- 
tron layer. We are injecting at the bottom of a potential trough as shown 
in Fig. 1. Of course as the self-field develops P, will no longer be zero at 

600- 

FIG. 1. The magnetic potential, P, as a function of R, at 2 = 0, for the case b == - 600. 

R = 1, and the layer will spread radially. We determine cz by the de- 
sired pitch angle in the midplane. Consider an equilibrium particle 
orbit, R = 1, with velocity components in the midplane, Z = 0, given 

by 
(A, Ab, 2) = (0, v sin d, v cos 8); 

then for such an orbit to be reflected at Z = I* requires 

a = - 2qcsc B + 1)/J*(A). 

We shall present results for the case b = - 600. 
The constant B,, defined earlier can be given by 

B 
0 

L - m°C2yp sin ~7 __- 
7 

em 

where p and y are determined by the injection energy. With B0 and r, 

we can determine the parameter C, used in Eqs. (16), (20), and (21). 
For r, = 30 cm and B. = 600 gauss we have C, = - 5.27. In the calcu- 
lations shown in this paper we have used C, = - 5.0. 
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For r. = 30 cm, we have 1* = 10.0, giving a domain - 10 I 2 I 10. 
With the vacuum field given by Eq. (43) there is a long central region 
with uniform axial field. In order to shorten the computation time and 
still keep a small h we generally halve the above domain. In the problem 
shown in this report we have used - 5 ( 2 L 5. We have also used 
R2 = 1.5, R, = 0.5, (u,),,, = 10.0, (u,)~~~ = 5.0. The finite-difference 
mesh is characterized by h = l/8 and h* = 1. The choice of h = l/S 
gives a spatial increment of 3.75 cm. The finite-difference phase space 
is then 81 in 2, 9 in R, 21 in up, and 11 in u,. 

The time step, At, is governed by the stability conditions given in 
Eq. (38). The dominant condition is 

T=ZOO T= 30.0 _I ---__ 

- 

-l 

4 

I 

FIG. 2. The current density and the magnitude of the magnetic field as a function 
of Z for various values of R at z = 20 and t = 30. The electron distribution function 
as a function of u, for u, = 0 at the point 2 = 0, R = 1, and at z = 20, t =30. 
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We see from Eq. (20) and Fig. 1 that j P, j becomes very large for small 
R. This imposes a practical lower bound on R for reasonable running 
times. A useful technique is to run for quite a while with some value 
of R,, and then as the radial spreading becomes appreciable we can de- 
crease R,, but must also decrease 4t; e.g., with h* = 1 for &, = 5 
we use 4t = 0.1 and for jmin = 4 we use dt = 0.05. 

The source of electrons is described by the function 0 in Eq. (19). 
For these calculations we have injected at one point in phase space; e.g., 
at the point i = 38, j = 8, k = 0, 1 = 0 and amount 0.4~ is added at 
every time step. If 100 A of electrons are injected into a volume of phase 
space Iz~Iz*~ = (1/S)2(3O)2 cm2, then S = 0.4466 x 10zo elec/cm2-set and 
S/c = 1.489 x lo9 elec/cm3. We then have cr = 0.3776, and for 150 A 

T.40.0 7-i 50.0 
--I ’ 7 

ZOL 1',:0 !LOC up0 
I 

I 
5ol ,...’ ..,._. 

(/ 6.0 

p,pr’ ‘. l..., ‘. . . . . . . R=I.O Ii 1 ;‘$J :...... ,..... -.. . . . . ..-. p=’ 0 :’ . 

FIG. 3. The current density and the magnitude of the magnetic field as a function 
of 2 for various values of R at t = 40 and t = 50. The electron distribution function 
as a function of ua for U, = 0 at the point Z = 0, R = 1, and at t = 40, T = 50. 
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we have CJ = 0.5664. We typiaclly use u = 0.5, or to achieve strong self- 
fields we increase it by an order of magnitude or more. 

The case 8 = - 600 is meant to achieve a pitch angle of 300 in the 
midplane. In Figs. 2 and 3 we show the early formation of a sharp 
E-layer, i.e., P, = 0 at R = 1.0. The quantity f(R, Z, t) is given by 
Eq. (27), and we relate it to the current density by the relation 

rj, = - (&/8n)t 

We also show 6(R, Z, t), where 6 = (6: + 6F)1’2. In these calculations 
we have used u = 5.0 in order to achieve an exaggerated effect on the 
field in a short time. The electrons are injected at Z = + 4.75, R = 1.0 

0.5 - 

-5 -4 -3 -2 -I 4 , 2 3 4 5 

04 II I1 -3 -2 -I L’L’ I 2 3 
4.0 r 9, ___- ,2=*4.75 
3.0- z:. ,:i’, - ;z. 475 

2.0 - //I \ 
RI ;i // 
l.O- 

*\ 
,' ' 

1.5-i. 
x 

__z=-475 /< hN. . --._ 

, o _ 2.+415‘ ;‘ &i', 
i 

6 

05- 
’ GO 

d 

. . 
0 I I 

0 0.5 R IO 

FIG. 4. The current density and the magnitude of the magnetic field as a function 
of Z for various values of R and as a function of R for various values of Z all at the 
same time. The electron distribution function as a function of u, for u, = 0, and as 
a function of u, for u, corresponding to the maximum Q, at the point 2 = 0, R = 1. 
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with U, = U, = 0. The applied mirror field causes the particles to move 
to the left. In Fig. 2 we see that at T = 20 the layer has formed about 
half way. At this time we also show Q vs. U, at the point Z = 0, R = 1, 
and the distribution has a single peak for u, < 0. At r = 30 the layer 
has reached the other end and has been reflected by the mirror field. 
The velocity distribution now shows a small peak for U, > 0. In Fig. 3 
we show the same quantities at 5 = 40 and 7 = 50. The layer has de- 
veloped for all Z and we see two peaks in the U, distribution as one would 
expect. 

In Fig. 4 we show the character of the layer after radial spreading has 
taken place. We see that the layer has moved inward radially in the 
central region. The reduction of the field in the central region is sub- 
stantial. The velocity distribution at Z = 0, R = 1 shows that the 
maximum is no longer at U, = 0, but has shifted to U, < 0. 

Many other runs have been performed with this program for a variety 
of injection conditions and several versions of the applied magnetic 
field. 

APPENDIX 

Computation Checks 

We can give the total number of particles injected into the system 
at time t by the expression 

t luJu,ArAz 
i 

S dt’, 
0 

where Au,Au,ArAz is the element of phase space used for injection. 
For the mode of injection described earlier we compute the dimension- 
less quantity 

N” = h*2h2 i a”&. 
m=1 

The total number of particles in the system at time t = t, is propor- 
tional to 

SUM” = h*“h2 i 2 $ i Q?,~,~,~. 
is-I j=l k--h’ 1z-L 

We should then have 
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for conservation of particles, where M and Q are the total number of 
particles lost through the physical boundaries and are defined in Eqs. 
(40) and (41). 

We define the energy in the electromagnetic field by the expression 

If we divide the above expression by the constant riB34 we obtain the 
quantity 

F(t) = j”rl$Z j-7 R dR[62, + 6; + e2], 

where de = E,JB, = - (1/2R) (8,C/ar>. 
A finite-difference approximation to this integral is 

F” = h3 i i &-I jso i{[(k)‘t,i12 + @iM,i12 + Kes>%,jl”). 

The energy of injected particles can be defined by 

s 

t 
m,c2Au,Au,ArAz yS dt’. 

0 

If we divide the above by riBi/ and use the mode of injection de- 
scribed we have 

Tn = CT2 h*2h2 5 $,~(s~‘A/J,,~, 
rn=l 

where r$& is the y of the element that the particles are injected into. 
The energy of particles in the system is given by 

moc2 J J J f y f dr dz du, du2. 

Again dividing by ri/B,2/4 we can compute the dimensionless quan- 
tity 

The conservation check is then 

Fn - FO + E” = T”. 
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These integrals as discussed are really not as accurate as the solu- 
tions of the difference equations. Integration formulas which are more 
sophisticated than the simple sums described must be used to give good 
conservation checks. 
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